The crestr
package has been designed for two independent
but complementary modelling purposes [1]. The
probabilistic proxy-climate responses can be used to quantitatively
reconstruct climate from their statistical combination [2-3], or they can be
used in a more quantitative way to determine the (relative) climate
sensitivities of different taxa in a given area to characterise past
ecological changes [4-5].
In both cases, the difficulty of running a CREST analysis lies in the definition of the study-specific parameters of the algorithm, which can make the learning curve a bit steep at the beginning. However, default values are provided for all parameters to enable an easy and rapid generation of preliminary results that users can then use as a reasonable first estimate before adapting the model to their data. To guide users in this task and avoid the standard ‘black box’ criticism faced by many complex statistical tools, a large array of publication-ready, graphical diagnostic tools was designed to represent CREST data in a standardised way automatically. These tools include plots of the calibration data, the estimated climate responses, the reconstructions and many more. They can be used to look at the data from different perspectives to help understand why the results are what they are and possibly help identify potential issues or biases in the selected data and parameters. Such diagnostic tools are available for every step of the process, and, as exemplified by this example, they can be generated with a single line of R code.
This introductory tutorial presents the most important steps of a CREST reconstruction using pseudo-data. The different modelling assumptions are illustrated using the various graphical diagnostic tools proposed by the package. In the first part, the pseudo-data and their different characteristics are presented, the second part describes how to access the pseudo-data from crestr and in the last part, the data are used to reconstruct both temperature and precipitation. The R code used in this last part can be accessed here.
This example reconstructs temperature and precipitation from six taxa with different sensitivities to the observed climate gradients. For simplicity, the temperature data are constructed as an East-West climate gradient, while the precipitation data are designed as a North-South gradient. This results in, for instance, cold and rainy conditions in the bottom-left corner and warm and dry conditions in the opposite, top right corner (see Fig. 1). Such gradients are unrealistic, but they explain different concepts, such as the sensitivity of taxa to one or both variables.
In this environment, six different pseudo-species have been created, each one with specific climate preferences (Fig. 2):
Finally, we have also created a fossil record composed of 20 samples where the percentages of the different taxa vary (Fig. 3). We selected percentages so that the climate is relatively cold and dry in the first samples, then temperature and precipitation increase. A cold and dry reversal occurs around the middle of the records (samples 11 and 12), and stable humid and warm conditions prevail in the last samples. The top sample also contains a seventh taxon (Taxon7) that doesn’t grow across the study area. It was added to illustrate that crestr can deal with unknown taxa.
crestr
The pseudo-data are stored in crestr in different datasets and can be loaded as follow:
The fossil data are contained in crest_ex
(“crest
example”). The data frame comprises 20 fossil samples from which the
seven taxa have been identified. The data are already expressed in
percentages.
## the first 6 samples
head(crest_ex)
#> Age Taxon1 Taxon2 Taxon3 Taxon4 Taxon5 Taxon6 Taxon7
#> Sample_1 1 0 0 45 1 22 32 1
#> Sample_2 2 0 0 50 0 23 27 0
#> Sample_3 3 0 0 49 0 25 26 0
#> Sample_4 4 0 0 37 0 27 36 0
#> Sample_5 5 0 3 36 3 18 40 0
#> Sample_6 6 2 2 25 0 21 50 0
## the structure of the data frame
str(crest_ex)
#> 'data.frame': 20 obs. of 8 variables:
#> $ Age : int 1 2 3 4 5 6 7 8 9 10 ...
#> $ Taxon1: int 0 0 0 0 0 2 3 5 10 15 ...
#> $ Taxon2: int 0 0 0 0 3 2 5 5 12 8 ...
#> $ Taxon3: int 45 50 49 37 36 25 18 17 10 12 ...
#> $ Taxon4: int 1 0 0 0 3 0 0 6 15 14 ...
#> $ Taxon5: int 22 23 25 27 18 21 21 20 16 13 ...
#> $ Taxon6: int 32 27 26 36 40 50 53 47 37 38 ...
#> $ Taxon7: int 1 0 0 0 0 0 0 0 0 0 ...
A proxy-species equivalency (“pse”) table must be provided for each reconstruction. This table is used to associate distinct species to the fossil taxon. For example, in the case of pollen data, this step is used to link all the species producing undifferentiated pollen morphotypes in a single pollen-type. Here, the seven pseudo-taxa are ‘identified’ at the species level so that the table looks like the following:
crest_ex_pse
#> Level Family Genus Species ProxyName
#> 1 3 Randomaceae Randomus Taxon1 Taxon1
#> 2 3 Randomaceae Randomus Taxon2 Taxon2
#> 3 3 Randomaceae Randomus Taxon3 Taxon3
#> 4 3 Randomaceae Randomus Taxon4 Taxon4
#> 5 3 Randomaceae Randomus Taxon5 Taxon5
#> 6 3 Randomaceae Randomus Taxon6 Taxon6
#> 7 3 Randomaceae Randomus Taxon7 Taxon7
By default, all the identified taxa are used to produce the reconstruction. However, it is sometimes helpful to select a subset of taxa for each variable to improve the signal over noise ratio of the reconstructions. This identification is usually not straightforward and requires some expertise. Here, this information is known because the pseudo-data were generated with apparent sensitivities (see Fig. 2). In crestr, these known sensitivities are expressed in one single table containing 1s (meaning “use this taxon for this variable”) and 0s (meaning “do not use this taxon for this variable”). Based on the description of the sensitivities of the pseudo-taxa (see above), it translates as follow:
crest_ex_selection
#> bio1 bio12
#> Taxon1 1 1
#> Taxon2 1 0
#> Taxon3 1 0
#> Taxon4 0 1
#> Taxon5 0 1
#> Taxon6 0 0
#> Taxon7 1 1
Note that Taxon7 is indicated with 1s but, as no data are available to calibrate its relationship with climate, these values will later be transformed into “-1”.
To illustrate the process, we will reconstruct bio1 (mean annual temperature) and bio12 (annual precipitation) from these pseudo data. The complete description of the different parameters is available here.
The first step of any reconstruction is to extract the species
distribution data. This is done with the
crest.get_modern_data() function. This function creates a
nested R object reconstr
that contains all the information
that will be updated in the following steps. All the functions from the
package require such an object. For more details, check the
crestObj vignette. We can also verify that the
selectedTaxa table has been modified for Taxon7.
reconstr <- crest.get_modern_data(
df = crest_ex, # The fossil data
pse = crest_ex_pse, # The proxy-species equivalency table
taxaType = 0, # The type of taxa is 0 for the example
site_info = c(7.5, 7.5), # Coordinates to estimate modern values
site_name = 'crest-test', # A specific name for the dataset
climate = c("bio1", "bio12"), # The climate variables to reconstruct
selectedTaxa = crest_ex_selection, # The taxa to use for each variable
dbname = "crest_example", # The database to extract the data
verbose = FALSE # Print status messages
)
reconstr$inputs$selectedTaxa
#> bio1 bio12
#> Taxon1 1 1
#> Taxon2 1 0
#> Taxon3 1 0
#> Taxon4 0 1
#> Taxon5 0 1
#> Taxon6 0 0
#> Taxon7 -1 -1
At every step of the process, the content of the crestObj can be checked by printing the object. The information displayed is updated based on the reconstruction step.
print(reconstr, as='data_extracted')
#> *
#> * Summary of the crestObj named ``:
#> * x Calibration data formatted .. TRUE
#> * x PDFs fitted ................. FALSE
#> * x Climate reconstructed ....... FALSE
#> * x Leave-One-Out analysis ...... FALSE
#> *
#> * The dataset to be reconstructed (`df`) is composed of 20 samples with 7 taxa.
#> * Variables to analyse: bio1, bio12
#> *
#> * The calibration dataset was defined using the following set of parameters:
#> * x Proxy type ............ Example dataset
#> * x Longitude ............. [-0.125 - 14.875]
#> * x Latitude .............. [-0.125 - 14.875]
#> *
#> * Of the 7 taxa provided in `df` and `PSE`, 1 cannot be analysed.
#> * (This may be expected, but check `$misc$taxa_notes` for additional details.)
#> *
The next step consists in fitting the PDFs using the crest.calibrate() function. The climate space weighting is selected by default because it is essential to account for the possible heterogeneous distribution of the modern climate when fitting the PDFs. As can be seen in Fig. 5 for temperature, the coldest and warmest values are underrepresented compared to the intermediate values. The correction diminishes the effect of this distribution by upweighting rare values and down-weighting the most abundant ones.
reconstr <- crest.calibrate(
reconstr, # A crestObj produced at the last stage
climateSpaceWeighting = TRUE, # Correct the PDFs for the heteregenous
# distribution of the modern climate space
bin_width = c(2, 50), # The size of bins used for the correction
shape = c("normal", "lognormal"), # The shape of the species PDFs
verbose = FALSE # Print status messages
)
plot_climateSpace(reconstr)
Other graphical tools can be used to determine the specific sensitivities of each taxon to the selected climate variable. Fig. 6 below represents the characteristic responses of Taxon2 and Taxon7 to bio1. By construction, we know that Taxon2 is sensitive to bio1, while Taxon6 is not. This can be inferred from Fig. 6 by comparing the histograms that represent the proportion of the climate space occupied by each taxon, but also from the width of the PDFs. The PDFs of sensitive taxa are narrower. In the case of Taxon6, its presence in almost every grid cell of the study area indicates that its distribution is not constrained by either bio1 or bio12 at least in this study area. If the spatial scale of the study were changed, some trends in the distribution would ultimately appear.
plot_taxaCharacteristics(reconstr, taxanames='Taxon2', climate='bio1', h0=0.2)
plot_taxaCharacteristics(reconstr, taxanames='Taxon6', climate='bio1', h0=0.2)
The last step of the process is the reconstruction itself, which is
done with the crest.reconstruct() function. The results can be
accessed from reconstr
as follow:
reconstr <- crest.reconstruct(
reconstr, # A crestObj produced at the previous stage
verbose = FALSE # Print status messages
)
names(reconstr)
#> [1] "inputs" "parameters" "modelling" "reconstructions"
#> [5] "misc"
head(reconstr$reconstructions$bio1$optima)
#> Age optima mean
#> 1 1 15.71142 15.69949
#> 2 2 15.71142 15.69949
#> 3 3 15.71142 15.69949
#> 4 4 15.71142 15.69949
#> 5 5 17.31463 17.29054
#> 6 6 18.11623 18.12464
str(reconstr$reconstructions$bio1$optima)
#> 'data.frame': 20 obs. of 3 variables:
#> $ Age : num 1 2 3 4 5 6 7 8 9 10 ...
#> $ optima: num 15.7 15.7 15.7 15.7 17.3 ...
#> $ mean : num 15.7 15.7 15.7 15.7 17.3 ...
signif(reconstr$reconstructions$bio1$likelihood[1:6, 1:6], 3)
#> [,1] [,2] [,3] [,4] [,5] [,6]
#> [1,] 0.00e+00 8.02e-02 1.60e-01 2.40e-01 3.21e-01 4.01e-01
#> [2,] 8.41e-15 1.15e-14 1.57e-14 2.14e-14 2.92e-14 3.97e-14
#> [3,] 8.41e-15 1.15e-14 1.57e-14 2.14e-14 2.92e-14 3.97e-14
#> [4,] 8.41e-15 1.15e-14 1.57e-14 2.14e-14 2.92e-14 3.97e-14
#> [5,] 8.41e-15 1.15e-14 1.57e-14 2.14e-14 2.92e-14 3.97e-14
#> [6,] 1.45e-18 2.09e-18 3.01e-18 4.32e-18 6.19e-18 8.86e-18
str(reconstr$reconstructions$bio1$likelihood)
#> num [1:21, 1:500] 0.00 8.41e-15 8.41e-15 8.41e-15 8.41e-15 ...
print(reconstr, as='climate_reconstructed')
#> *
#> * Summary of the crestObj named ``:
#> * x Calibration data formatted .. TRUE
#> * x PDFs fitted ................. TRUE
#> * x Climate reconstructed ....... TRUE
#> * x Leave-One-Out analysis ...... FALSE
#> *
#> * The dataset to be reconstructed (`df`) is composed of 20 samples with 7 taxa.
#> * Variables to analyse: bio1, bio12
#> *
#> * The calibration dataset was defined using the following set of parameters:
#> * x Proxy type ............ Example dataset
#> * x Longitude ............. [-0.125 - 14.875]
#> * x Latitude .............. [-0.125 - 14.875]
#> *
#> * The PDFs were fitted using the following set of parameters:
#> * x Minimum distinct of distinct occurences .. 20
#> * x Weighted occurence data .................. FALSE
#> * x Number of points to fit the PDFs ......... 500
#> * x Geographical weighting ................... TRUE
#> * Using bins of width .................... bio1: 2
#> * ________________________________________ bio12: 50
#> * x Weighting of the climate space ........... TRUE
#> * Using a linear correction
#> * x Restriction to climate with observations . FALSE
#> * x Shape of the PDFs ........................ bio1: normal
#> * __________________________________________ bio12: lognormal
#> *
#> * Of the 7 taxa provided in `df` and `PSE`, 1 cannot be analysed.
#> * (This may be expected, but check `$misc$taxa_notes` for additional details.)
#> *
#> * The reconstructions were performed with the following set of parameters:
#> * x Minimum presence value .................. 0
#> * x Weighting of the taxa ................... normalisation
#> * x Calculated uncertainties ................ 0.5, 0.95
#> * x Number of taxa selected to reconstruct .. bio1: 3
#> * ----------------------------------------- bio12: 3
#> *
The results can also be visualised in different forms using the plot function (Fig. 7). As per the design, the first samples are rather cold and dry, while the last ones are relatively warm and humid. A cold and dry event interrupted the transition between the two states.
plot(reconstr, climate = 'bio1')
plot(reconstr, climate = 'bio12', simplify=TRUE,
uncertainties=c(0.4, 0.6, 0.8), as.anomaly=TRUE)
#> Warning in plot.crestObj(reconstr, climate = "bio12", simplify = TRUE,
#> uncertainties = c(0.4, : No values available to calculate anomalies. Provide
#> coordinates to crest.get_modern_data() to allow crestr to extract the local
#> conditions, or assign values using 'anomaly.base = c(val1, val2, ...)' in the
#> plot function.'
Interpretations can be refined using the built-in ‘leave-one-out’ (loo) approach. The loo approach iteratively removes one taxon at a time and measures the impact removing that taxon had on the ‘true’ reconstruction. The results can be plotted as a stratigraphic diagram.
reconstr <- loo(reconstr)
plot_loo(reconstr, climate = 'bio1')
If satisfying, the results can be directly exported from the R
environment in individual spreadsheets for each variable (or CSV files).
The reconstruct
object is exported as an RData file to
simplify future data reuse. In the following lines of code, replace
‘tempdir()’ with the location where the files should be saved.
export(reconstr, loc=tempdir(), dataname='crest-test')
list.files(file.path(tempdir(), 'crest-test'))
#> [1] "bio1" "bio12" "crest-test.RData"
[1] Chevalier, M., 2022. crestr an R package to perform probabilistic climate reconstructions from palaeoecological datasets. Clim. Past. doi:10.5194/cp-18-821-2022.
[2] Chevalier, M., Chase, B.M., Quick, L.J., Dupont, L.M. and Johnson, T.C., 2021. Temperature change in subtropical southeastern Africa during the past 790,000 yr. Geology 49, 71–75. 10.1130/G47841.1.
[3] Chevalier, M., Chase, B.M., 2015. Southeast African records reveal a coherent shift from high- to low-latitude forcing mechanisms along the east African margin across last glacial–interglacial transition. Quat. Sci. Rev. 125, 117–130. doi:10.1016/j.quascirev.2015.07.009.
[4] Quick, L.J., Chase, B.M., Carr, A.S., Chevalier, M., Grobler, B.A. and Meadows, M.E., 2021, A 25,000 year record of climate and vegetation change from the southwestern Cape coast, South Africa. Quaternary Research, pp. 1–18. 10.1017/qua.2021.31.
[5] Chevalier, M., Chase, B. M., Quick, L. J. and Scott, L.: An atlas of southern African pollen types and their climatic affinities, in Palaeoecology of Africa, vol. 35, pp. 239–258, CRC Press, London., 2021. 10.1201/9781003162766-15.